
Parallel and Constrained Differential Dynamic
Programming for Fast Robotic Motion Planning

A thesis presented

by

Brian Kyle Plancher

to

the John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Masters of Engineering

in the subject of

Engineering Sciences

Harvard University

Cambridge, Massachusetts

May 2018

c© 2018 Brian Kyle Plancher

All rights reserved.

Dissertation Advisor:
Professor Scott Kuindersma

Author:
Brian Kyle Plancher

Parallel and Constrained Differential Dynamic Programming for Fast
Robotic Motion Planning

Abstract

Differential Dynamic Programming (DDP) has become a popular approach to performing

trajectory optimization for complex, underactuated robots. However, using DDP in dynamic

environments presents three practical challenges. First, the evaluation of dynamics derivatives

during optimization creates a computational bottleneck, particularly in implementations that

capture second-order dynamic effects. Second, constraints on the states (e.g., boundary

conditions, collision constraints) require additional care since the state trajectory is implicitly

defined from the inputs and dynamics. Third, computing solutions fast enough for online robotic

motion planning can be challenging. This thesis addresses these problems by first building

on recent work on Unscented Dynamic Programming (UDP)—which eliminates dynamics

derivative computations in DDP—to support general nonlinear state and input constraints

to high precision using an augmented Lagrangian. We then leverage parallel computations

for increased throughput and systematically analyze the insights, challenges, tradeoffs, and

benefits of implementing a parallelized variant of DDP on both a multi-core CPU and a

graphics processing unit (GPU). Finally, we present results demonstrating the performance

of our constrained UDP (CUDP) and parallel DDP algorithms on several simulated robot

systems including a quadrotor and a 7-DoF robotic arm.

iii

Contents

Abstract . iii
Acknowledgments . viii

1 Introduction 1

2 Algorithmic Background 4
2.1 Differential Dynamic Programming (DDP) . 4
2.2 Unscented Dynamic Programming (UDP) . 9
2.3 Augmented Lagrangian Methods . 11

3 Constrained Unscented Dynamic Programming (CUDP) 13
3.1 Constrained DDP Background . 13
3.2 The CUDP Algorithm . 15
3.3 Experiments . 19

3.3.1 Inverted Pendulum . 19
3.3.2 Quadrotor . 23
3.3.3 Robotic Arm . 25

4 Parallelizing DDP 28
4.1 Instruction Level Parallelizations for DDP . 29
4.2 Algorithmic Level Parallelism for DDP . 32

4.2.1 Backward Pass . 32
4.2.2 Forward Pass . 35

4.3 Final Parallel Algorithm . 36

5 Using Parallel DDP for Fast Robotic Motion Planning 38
5.1 CUDA Background . 39
5.2 C++ Threading Background . 41
5.3 Implementation Details . 42
5.4 Examples . 44

5.4.1 Simple Pendulum . 45

iv

5.4.2 Inverted Pendulum . 47
5.4.3 Quadrotor . 49

6 Conclusion 51

References 53

v

List of Tables

3.1 CUDP inverted pendulum optimization results. 23
3.2 CUDP quadrotor optimization results. 25
3.3 CUDP Kuka arm optimization results. 27

vi

List of Figures

2.1 Graphical representation of the Unscented Transform in UDP. 10

3.1 Inverted Pendulum [1] . 20
3.2 Cost and constraint violation per iteration for CUDP succeeding on the inverted

pendulum. 21
3.3 Cost and constraint violation per iteration for iLQR-A failing on the inverted

pendulum. 22
3.4 Collision-free quadrotor trajectory computed by CUDP. 24
3.5 Collision-free Kuka arm trajectory computed by constrained UDP. 26

4.1 Graphical representation of a parallel reduction. 30
4.2 Graphical representation of the backward pass algorithmic level parallelizations. 33
4.3 Graphical representation of the linear coordinate transformation. 33
4.4 Graphical representation of the forward pass algorithmic level parallelizations. 35

5.1 High level architecture differences between a single CPU and GPU processor [2]. 39
5.2 Total cost per iteration for the simple pendulum swing up. 45
5.3 Median time per iteration time for the simple pendulum swing up. 46
5.4 Total cost per iteration for the inverted pendulum swing up. 48
5.5 Median time per iteration time for the inverted pendulum swing up. 48
5.6 Total cost per iteration for the quadrotor flight. 49
5.7 Median time per iteration time for the quadrotor flight. 50

vii

Acknowledgments

This work would not have been possible without. . .

. . . my adviser, Professor Scott Kuindersma, for not only providing amazing guidance, support,

and insights throughout this process, but more importantly, for taking a chance on a management

consultant trying to get into robotics. The trust you have placed in me over the past couple years has

not only been empowering, but has also allowed me to live a full life while completing this work. I doubt

I could have been as successful with anyone else as an adviser, and am grateful for the opportunity to

continue working with you through my doctoral work over the coming years.

. . . my co-author, Professor Zachary Manchester, without whose patience, expertise, thoughtfulness,

and aid in those first couple of months when I was trying to get up to speed, I am not certain I would

have been able to convince Scott that I was worth keeping around. Furthermore, without your insights,

guidance, and original research, this work would not be possible. We are all sad that you are no longer

a postdoc in our lab, but also excited to see what amazing work you will do as a Professor!

. . . my engineering community: my undergraduate thesis advisor, Professor Greg Morrisett, who

also took a chance supporting a former economics major who switched late into computer science,

Professor Gu-Yeon Wei, for all of his guidance and support and for teaching me that there is more to

fast computing than good software, Professors David Parkes and James Mickens for their support and

advice, and of course, the members of the Harvard Agile Robotics Lab, especially my fellow G1/2s for

all of their useful feedback, insights, help, and friendship throughout this process.

. . . my K-12 teachers, especially Ms. Boyea, and Mr. Yoon for instilling in me both a passion for

learning, and a respect for hard work.

. . . my family and friends, for their unwavering, friendship, love, and support.

This work was partially supported by an Internal Research and Development grant from Draper, Inc.

viii

To my mom, dad, pop, ah-ah, grammy, gramps, and sisters who have never
stopped cheering me on when I succeed, picking me up when I fall, keeping me
company on the phone when I’m driving/biking/walking, and leading me on the
right path in life.

To my wife and puppy whose unconditional love and support make every
morning a great morning (as long as it is past 10am) and who constantly push me
to be the best version of myself.

ix

Chapter 1

Introduction

Trajectory optimization algorithms [3] have been particularly successful in solving the histori-

cally important problems of control and path planning for complex dynamic robots [4; 5; 6; 7; 8].

These algorithms pose these problems as a constrained non-convex nonlinear optimization

problem—minimizing a cost function (e.g., the energetics of the system) subject to the system

dynamics and other real world constraints (e.g., contact with obstacles in the environment).

Two popular classes of these algorithms are direct transcription and shooting methods. Direct

transcription methods explicitly represent the state, the controls, the dynamics, and any

additional constraints. These methods have received a large amount of attention as the

problem can be structured as a large (and sparse) nonlinear program that can be solved

efficiently using off-the-shelf packages such as the Sequential Quadratic Programming (SQP)

solver SNOPT [9], or the Interior Point solver IPOPT [10]. Shooting methods, on the other

hand, never explicitly represent the full optimization space and instead optimize over the

inputs through minimizing an approximate cost-to-go function.

1

One key subclass of shooting methods is Differential Dynamic Programming (DDP), which

parameterizes only the input trajectory and uses Bellman’s optimality principle to iteratively

solve a sequence of much smaller optimization problems in order to compute the optimal input

(and corresponding state) trajectory [11; 12]. Recently, DDP and its variants, particularly the

iterative Linear Quadratic Regulator (iLQR) [13], have received increased attention due to

growing evidence that online robotic motion planning using a model predictive control (MPC)

approach is possible for high-dimensional robots [6; 14; 15; 16; 17]. This is particularly exciting

because, as Koenemann et. al. [15] states, "[c]ontrolling the robot with a permanently-updated

optimal trajectory, also known as model predictive control, is the Holy Grail of whole-body

motion generation." However, while constraints are easily and directly addressed in direct

transcription methods, in shooting methods, constraints are typically only approximately

addressed by augmenting the native cost with constraint penalty functions. This is problematic

as most robot tasks of interest include actuator limits and state constraints (e.g., obstacle

avoidance, reaching a desired goal state, maintaining contact with the environment) that need

to be strictly satisfied.

At the same time, the impending end of Moore’s Law and the end of Dennard Scaling have

led to a utilization wall that limits the that performance a single chip can deliver [18; 19].

Computer scientists searching for higher throughput have had to look beyond the CPU to

exploit large scale parallelism. For example, in the field of machine learning, computer

scientists and hardware engineers have almost exclusively used either high performance GPUs,

or designed custom accelerator chips to provide increased performance [20]. Recently, these

ideas have even been used in the field of robotics to enable real-time collision checking for a

robotic arm in a constrained environment through the use of a custom voxel based collision

checker on an FPGA [21; 22], and to compute trajectories on GPUs through sample based

methods [23; 24; 25; 26]. Despite these impressive results, and historic interest in parallel

trajectory optimization [27], there has been little analysis of the use of modern parallel

hardware to accelerate trajectory optimization.

2

Our goal in this work is twofold. First, we introduce a variant of DDP, Constrained Unscented

Dynamic Programming (CUDP), that captures nonlinear constraints on states and inputs

with high accuracy while maintaining favorable convergence properties through the use of an

augmented Lagrangian. We present results demonstrating its favorable performance on several

simulated robot systems. Second, we build on the previous work to systematically analyze the

performance benefits and importantly, the trade-offs, of both algorithmic and instruction level

parallelism for DDP algorithms by describing, analyzing, and experimenting with a particular

implementation of an iLQR algorithm targeting modern multi-core CPUs and GPUs.

In the remainder of this work we first review key concepts from DDP, augmented Lagrangian

methods, and the unscented transform (Chapter 2). We then introduce the constrained

unscented dynamic programming (CUDP) algorithm, and describe experimental results on an

inverted pendulum, a quadrotor flying through a virtual forest, and a manipulator avoiding

obstacles in simulation (Chapter 3). We then discuss the ways that DDP algorithms can be

parallelized and present our parallel iLQR algorithm (Chapter 4). Finally, we review practical

insights and trade-offs that were encountered in our implementation, both for multi-core CPUs

and for GPUs, and describe experimental results on a simple pendulum, an inverted pendulum,

and a Quadrotor in simulation (Chapter 5).

3

Chapter 2

Algorithmic Background

2.1 Differential Dynamic Programming (DDP)

The classical DDP algorithm begins by simulating (shooting) a discrete time approximation

of the underlying continuous system dynamics forward from an initial state with an initial

guess for the input trajectory. An affine control law is then computed in a backwards pass

using local quadratic approximations of the cost-to-go. The forward pass is then performed

again using this control law to update the input trajectory. This process is repeated until

convergence.

Second derivatives of the dynamics (rank-three tensors) are required to compute the quadratic

cost-to-go approximations used in DDP. This computational bottleneck led to the development

of the iterative Linear Quadratic Regulator (iLQR) algorithm [13], which uses only first deriva-

tives of the dynamics to reduce computation time at the expense of slower convergence. Recent

work has proposed a completely derivative-free variant of DDP that uses a deterministic sam-

pling scheme inspired by the unscented Kalman filter [28]. The resulting algorithm, Unscented

Dynamic Programming (UDP) [29], has the same computational complexity per-iteration as

iLQR with finite-difference derivatives, but provides empirical convergence approaching that

4

of the full second-order DDP algorithm. In the remainder of the paper, “DDP” is used to refer

to vanilla DDP, iLQR, and UDP when the statement holds for all algorithms.

We now derive the classical DDP algorithm by assuming a discrete-time nonlinear dynamical

system of the form:

xk+1 = f(xk, uk), (2.1)

where x ∈ Rn is the system state and u ∈ Rm is a control input. The goal is to find an input

trajectory, U = {u0, . . . , uN−1}, that minimizes an additive cost function,

J(x0, U) = `f (xN) +
N−1∑
k=0

`(xk, uk), (2.2)

where x0 is the initial state and x1, . . . , xN are computed by integrating the discrete time

forward dynamics (2.1).

Using Bellman’s principle of optimality [30], the optimal cost-to-go, Vk(x), can be defined by

the recurrence relation:

VN (x) = `f (xN)

Vk(x) = min
u

`(x, u) + Vk+1(f(x, u)).
(2.3)

When interpreted as an update procedure, this relationship leads to classical dynamic pro-

gramming algorithms [30]. However, the curse of dimensionality prevents direct application of

dynamic programming to most systems of interest to the robotics community. In addition,

while VN (x) = `f (xN), and often has a simple analytical form, Vk(x) will typically have

complex geometry that is difficult to represent due to the nonlinearity of the dynamics (2.1).

DDP avoids these difficulties by settling for local approximations to the cost-to-go along a

trajectory.

Q(δx, δu) is defined as the local change in the minimization argument in (2.3) under perturba-

5

tions, δx, δu:

Q(δx, δu) = `(x+ δx, u+ δu) + V (f(x+ δx, u+ δu))− `(x, u)− V (f(x, u)). (2.4)

Taking the second-order Taylor expansion of Q results in:

Q(δx, δu) ≈ 1

2

1

δx

δu

T

0 QTx QTu

Qx Qxx Qxu

Qu QTxu Quu

1

δx

δu

 , (2.5)

where the block matrices are computed as:

Qxx = `xx + fTx V
′
xxfx + V ′x · fxx

Quu = `uu + fTu V
′
xxfu + V ′x · fuu

Qxu = `xu + fTx V
′
xxfu + V ′x · fxu

Qx = `x + fTx V
′
x

Qu = `u + fTu V
′
x.

(2.6)

Following the notation used elsewhere [6], the explicit time indices are dropped and a prime

is used to indicate the next timestep. Derivatives with respect to x and u are denoted with

subscripts. The rightmost terms in the equations for Qxx, Quu, and Qxu involve second

derivatives of the dynamics, which are rank-three tensors. As mentioned previously, these

tensor calculations are relatively expensive and are often omitted, resulting in the iLQR

algorithm [13].

Minimizing equation (2.5) with respect to δu results in the following correction to the control

trajectory:

δu = −Q−1uu (Quxδx+Qu) ≡ Kδx+ κ, (2.7)

which consists of an affine term κ and a linear feedback term Kδx. These terms can be

6

substituted back into equation (2.5) to obtain an updated quadratic model of V :

Vx = Qx −Qxuκ

Vxx = Qxx −QxuK.
(2.8)

Additionally the expected change in the optimal cost-to-go can be computed:

δV ∗ = −1

2
Quκ. (2.9)

Therefore, a backward update pass can be performed starting at the final state, xN , by setting

VN = `f (xN), and iteratively applying the above computations. A forward simulation pass is

then performed to compute a new state trajectory using the updated controls. This forward-

backward process is repeated until the algorithm converges within a specified tolerance.

DDP, like other variants of Newton’s method, can achieve quadratic convergence near a local

optimum [12; 31]. However, care must be taken to ensure good convergence behavior from

arbitrary initialization: a line search parameter, α, must be added to the forward pass to

ensure a satisfactory decrease in cost, and a regularization term, ρIm, must be added to Quu

in equation (2.7) to ensure positive-definitiveness [32]. Finally, a choice must be made to

use a Euler, midpoint, Runge–Kutta [33], or other higher order integrator, to compute the

discrete time approximation of the system dynamics, which trades off integration accuracy for

speed.

This full procedure is summarized in Algorithm 1.

7

Algorithm 1: DDP

1: Initialize the algorithm and load in initial trajectories
2: while cost not converged do
3: Compute VN and derivatives
4: for k = N − 1, . . . , 0 do
5: (2.6) → Qk

6: if Qkuu is invertible then
7: (2.7) → Kk, κk
8: (2.8), (2.9) → Vk and derivatives
9: else

10: Increase ρ go to line 4
11: end if
12: end for
13: α = 1
14: x̃0 = x0
15: for k = 0, . . . , N − 1 do
16: ũk = uk + ακk +Kk(x̃k − xk)
17: x̃k+1 = f(x̃k, ũk)
18: end for
19: (2.2) and X̃, Ũ → J̃
20: if J̃ satisfies line search criteria then
21: Update X ← X̃, U ← Ũ
22: else
23: Reduce α and go to line 15
24: end if
25: Quadratize cost at X,U
26: Quadratize dynamics at X,U
27: end while

Backward
Pass

Forward
Pass

Next
Iteration
Setup

8

2.2 Unscented Dynamic Programming (UDP)

UDP [29] replaces the gradient and Hessian calculations in equation (2.6) with approximations

computed from a set of sample points. Inspired by the Unscented Kalman Filter [28], points are

sampled from a level set of the cost-to go function and propagated backward in time through

the nonlinear dynamics. They are then used to compute a new cost-to-go approximation at

the earlier timestep.

To compute the derivatives of V (f(x, u)) appearing in the Hessian (2.6), a set of 2(n + m)

sample points are generated from the columns of the following matrix:

L = chol

V ′xx 0

0 `uu

−1 . (2.10)

Each column, Li, is scaled by a constant factor, β, and both added to and subtracted from

the vector [x′;u] (again, using the shorthand x = xk, u = uk, x′ = xk+1):x̃′i
ũi

 =

x′
u

+ βLi

x̃′i+m+n

ũi+m+n

 =

x′
u

− βLi. (2.11)

The samples are then propagated backwards through the dynamics such that x̃i = f−1(x̃′i, ũi).

A discrete time backwards dynamics function can always be defined for a continuous-time

dynamical system by simply applying the integration rule backwards in time. Note that this

problem is not well posed for dynamics that include rigid contact unless certain smoothing

approximations are made [34].

Using these sample points, the Hessian in equation (2.6) becomes:Qxx Qxu

Qux Quu

 = M−1 +

`xx `xu

`ux 0

M =
1

2β2

2(n+m)∑
i=1

x̃i
ũi

−
x
u

x̃i
ũi

−
x
u

T

.

(2.12)

9

The gradient terms in (2.6) can be computed from the same set of sample points by solving a

linear system,

Qx
Qu

 = D−1

V ′xx̃i − V ′xx̃i+m+n

...

V ′xx̃n+m − V ′xx̃2(m+n)

+

`x
`u

 ,

D =

x̃i − x̃i+m+n . . . x̃m+n − x̃2(m+n)

ũi − ũi+m+n . . . ũm+n − ũ2(m+n)

 ,
(2.13)

which is equivalent to a centered finite difference. This procedure is shown graphically below

in Figure 2.1:

𝑉′(𝑥′) 𝑉′ ≈ 𝑉′ 𝑓 𝑥, 𝑢

𝑓− 𝑥′, 𝑢 = 𝑥 𝑥′

 𝑥

𝑉 𝑥 ≈ min𝑢 𝑙 𝑥, 𝑢 + 𝑉′

Figure 2.1: Graphical representation of the Unscented Transform in UDP.

10

2.3 Augmented Lagrangian Methods

Trajectory optimization aside, a natural approach to approximately enforcing constraints in

optimization algorithms is to apply a quadratic penalty to constraint violations. Suppose that

we wish to solve the generic minimization problem:

minimize
z

g(z)

subject to ci(z) = 0 i ∈ E ,
(2.14)

where g(z) and ci(z) are smooth nonlinear functions. Penalty methods for solving constrained

optimization problems start by defining a new cost function,

gp(z;µ) = g(z) +
µ

2

∑
i∈E

ci(z)
T ci(z), (2.15)

where µ is a scalar weighting parameter. As µ → ∞, the minimizing value of gp(z;µ) will

converge toward satisfaction of the constraints [35]. While µ often does not have to grow

unbounded for a solution to be found within a given tolerance, numerical issues are still

prevalent since the condition number of the Hessian of gp grows with µ (see [35] for additional

details).

To overcome the numerical issues associated with penalty methods, augmented Lagrangian

solvers add a linear term to gp that estimates the Lagrange multipliers associated with the

constraints:

LA(z;µ, λ) = g(z) +
µ

2

∑
i∈E

ci(z)
T ci(z) +

∑
i∈E

λici(z). (2.16)

Given initial values for µ and λ, an unconstrained minimization is performed, after which µ

and λ are updated. As in penalty methods, µ is systematically increased across these major

iterations using a predefined schedule. However, the presence of the λ terms allows convergence

with much smaller values of µ.

The update for λ at major iteration j can be derived by considering the first-order necessary

11

conditions evaluated at an approximate minimizer, zj :

0 ≈ OzLA(zj ;µj , λ
j) = Ozg(zj)−

∑
i∈E

[λji − µjci(zj)]Ozci(zj). (2.17)

Recall that the first-order necessary conditions for a local solution, z∗, λ∗, of the original

constrained optimization problem is given by differentiating the (true) Lagrangian [35]:

0 = Ozg(z∗)−
∑
i∈E

λ∗iOzci(z
∗). (2.18)

Comparing (2.17) and (2.18), a natural update rule for λ arises:

λj+1
i ← λji − µjci(zj) ∀i ∈ E . (2.19)

It can be shown that given λ∗, the solution, z∗, of (2.14) is a strict local minimizer of (2.16)

for all µ above some minimum value [35]. Practically speaking, the aim is to quickly improve

estimates of λ∗ so that reasonable approximations of z∗ can be computed by minimizing (2.16)

without µ growing too large.

12

Chapter 3

Constrained Unscented Dynamic

Programming (CUDP)1

3.1 Constrained DDP Background

As mentioned earlier, while DDP has been shown to be a very powerful algorithm, the

framework does not naturally handle arbitrary state and input constraints despite the need for

them for many robotic tasks including: respecting torque limits on actuators, avoiding obstacles,

reaching a desired goal state, and maintaining or breaking contact with the environment.

Several authors have proposed methods for adding constraints to DDP methods. These

approaches fall into two classes. The first approach was first described by Pantoja and Mayne

in 1989 [37] and later by Tassa et. al. in 2014 [38]. In both cases hard constraints are put on

the inputs by projecting the optimal feedback controller onto the input constraint manifold.

When the constraints are limted to bounding box constraints, which is natural for torque

limits, this is done by solving a Box QP in the backward pass instead of the usual Ricatti

1Co-authored with Zachary Manchester and Scott Kuindersma [36]

13

equations. This approach is able to guarantee that torque constraints are never violated at

any iteration. Farshidian et. al. [39] extend this to equality constraints on both the state

and input through a similar projection framework. However, this extension is still unable to

handle pure state constraints which are handled via penalty functions. Finally, Xie et. al. [40]

extend this approach to state and/or input constraints by solving a QP in both the forward

and backward passes.

The second approach is to include all of the constraints as a penalty term in the cost function.

These methods easily allow for arbitrary constraints of all types to be constructed. However,

while these soft constraints are penalized for in the cost function their satisfaction is never

explicitly required. As such, the final trajectory may not exactly satisfy the constraints

and designing effective penalty functions that satisfy constraints to high precision can be

difficult and time consuming. One solution is to use a continuation method and increase

penalty weighting coefficients in the cost function until convergence to a result that satisfies

the constraints [39]. However, it is well known that these methods often lead to numerical

ill-conditioning before reaching the desired constraint tolerance [41; 35]. In practice, this leads

to infeasible trajectories or collisions when run on hardware. Despite this, penalty methods

have seen broad application in robotics.

It is important to note that while we focus on quadratic penalties in this work, there are a

wide variety of other penalty functions that can be used. For example, L1 loss functions have

been used for collision-free path planning in robotic arms and humanoids [42] and van den

Berg [43] uses exponential barrier cost terms in his LQR Smoothing algorithm to prevent

a quadrotor from colliding with cylindrical obstacles. That said, many of these other loss

functions still have other challenges. For example, barrier methods require particular care in

cases where feasible initial guesses cannot be easily generated.

As pointed out by other researchers [44], augmented Lagrangian methods may be particularly

well-suited to trajectory optimization problems as they not only allow the solver to temporarily

traverse infeasible regions and aggressively move towards local optima, like other soft constraint

14

based continuation methods, but they also allow for constraints to be satisfied to high precision.

A theoretical formulation of this method was proposed for use in the DDP context over two

decades ago [45] and was later used to develop a hybrid-DDP algorithm [46], but this work

appears to have received little attention in the robotics community. We compare our CUDP

algorithm against this method.

3.2 The CUDP Algorithm

The CUDP algorithm applies the augmented Lagrangian constraint formulation to the standard

UDP algorithm. It does this by adding quadratic penalty and Lagrange multiplier terms

for each constraint to the cost function and defining an outer loop to update λ and µ when

the inner augmented UDP solution converges. We use the following augmented Lagrangian

function:

LA(x0, U ;µ, λ) = `f (xN) +

N−1∑
k=0

`(xk, uk) +
1

2

N∑
k=0

c(xk, uk)
T Iµkc(xk, uk) +

N∑
k=0

λkc(xk, uk),

(3.1)

where c(x, u) is the vertical concatenation of all equality and inequality constraints:

ci(x, u) = 0, i ∈ E

ci(x, u) ≥ 0, i ∈ I.
(3.2)

Following [44] inequality constraints are handled through Iµk which is defined as a diagonal

matrix that encodes the active constraints:

Iµk(i, i) =

µik i ∈ E

µik i ∈ I ∩
{
ci(xk, uk) < 0 ∪ λik > 0

}
0 otherwise

(3.3)

15

Including Iµk in Equation (3.1) ensures that penalties are not incurred when inequality

constraints are satisfied.

At each timestep during the backward pass of the UDP algorithm, the constraint functions

and their gradients are evaluated. A modified version of Q(δx, δu) from equations (2.5)–(2.6),

denoted as Q̂, is then defined to include a Gauss-Newton approximation of the constraint

terms:

Q̂xx = Qxx +
∂c(x, u)

∂x
Iµ
∂c(x, u)

∂x

Q̂uu = Quu +
∂c(x, u)

∂u
Iµ
∂c(x, u)

∂u
+ ρI

Q̂xu = Qxu +
∂c(x, u)

∂x
Iµ
∂c(x, u)

∂u

Q̂x = Qx + c(x, u)Iµ
∂c(x, u)

∂x
+ diag(λ)

∂c(x, u)

∂x

Q̂u = Qu + c(x, u)Iµ
∂c(x, u)

∂u
+ diag(λ)

∂c(x, u)

∂u
,

(3.4)

where the regularization parameter ρ > 0 is included. Equations (2.7) and (2.8) can then be

used as usual to compute the feedback policy during the backwards pass.

The forward pass remains unchanged except that the computation of the total cost must

be adjusted to include the cost from the augmented Lagrangian instead of the original cost

function.

As is typically done in augmented Lagrangian methods, λ is updated only if the constraint

violation of the local minimizer is less than a threshold value, φ, and otherwise µ is updated.

The parameter φ is updated according to a predefined schedule to help guide the algorithm

toward a solution while avoiding large increases in µ early on. While there are many different

variations on this schedule in the literature, most suggest a monotonically decreasing schedule

for φ, which results in a monotonically increasing µ [47; 35].

Note that while it is possible to use a single global value of µ, CUDP uses a separate µik and

λik for each constraint at each timestep. Bertsekas notes that this approach gives the solver

the most flexibility, at the expense of computational overhead [47]. Experiments indicate that

16

this is necessary for most robotics problems as the various constraints usually converge to

very different final values for µ and λ. Intuitively, a torque constraint should not behave the

same as a final state constraint as the former can be adjusted for at each timestep, while the

latter is the result of the full trajectory. It is important to note that this flexibility sometimes

comes with the price of additional major iterations, where adjacent timesteps pass large

inputs back-and-forth until both µ values are sufficiently increased. Finally, the initial value

of µ is set to be small relative to the primal cost function and increased slowly enough that

ill-conditioning does not occur in early major iterations, but also fast enough that constraint

tolerances are met in a reasonable amount of time.

In the end, the final algorithm proceeds by running the inner augmented UDP algorithm until

convergence, and then updating µ and λ according to a set schedule until the desired feasibility

tolerance is achieved. The full CUDP algorithm is summarized in Algorithm 2.

17

Algorithm 2: CUDP

1: Initialize the algorithm and load in initial trajectories
2: while max(c) > εc do
3: while cost not converged do
4: Compute VN and derivatives
5: for k = N − 1, . . . , 0 do
6: (2.12)–(2.13), (3.4) → Q̂k

7: if Q̂kuu is invertible then
8: (2.7) → Kk, κk
9: (2.8) → Vk and derivatives

10: else
11: Increase ρ go to line 5
12: end if
13: end for
14: α = 1
15: x̃0 = x0
16: for k = 0, . . . , N − 1 do
17: ũk = uk + ακk +Kk(x̃k − xk)
18: x̃k+1 = f(x̃k, ũk)
19: end for
20: Compute J̃ using (3.1) and X̃, Ũ
21: if J̃ satisfies line search criteria then
22: Update X ← X̃, U ← Ũ
23: else
24: Reduce α and go to line 16
25: end if
26: Quadratize cost at X,U
27: Quadratize dynamics at X,U
28: Linearize constraints, update Iλ at X,U
29: end while
30: for k = 0, . . . , N do
31: for i ∈ E ∪ I do
32: if cki < φki then
33: Update λki using (2.19)
34: Reduce φki
35: else
36: Increase µik
37: end if
38: end for
39: end for
40: end while

Backward
Pass

Forward
Pass

Outer
Loop

Updates

Next
Iteration
Setup

18

3.3 Experiments

In this section, three numerical examples are provided to demonstrate the performance of

CUDP. To do this, UDP and iLQR are compared using both penalty (-P) and augmented

Lagrangian (-A) formulations.2 All of the algorithms are implemented in MATLAB. Each

uses the same scheduling of updates to µ and λ, and all integration is done with a 3rd-order

Runge-Kutta [33] method and a time horizon of 4 seconds. The example systems are available

as part of Drake [48]. A MATLAB implementation of the algorithm with these examples is

available at http://bit.ly/ConstrainedUDP.

3.3.1 Inverted Pendulum

The first example is the classic swing-up task for the two degree of freedom inverted-pendulum

system (see Figure 3.1). The state vector is defined as x = [y, θ, ẏ, θ̇]T , where y is the translation

of the cart and θ is the angle of the pendulum measured from the downward equilibrium.

The initial state is x0 = [0, 0, 0, 0]T , the stable downward equilibrium, and the goal state is

xg = [0, π, 0, 0]T , the unstable upward equilibrium. A quadratic cost function of the form:

J =
1

2
(xN − xg)TQN (xN − xg) +

N−1∑
k=0

1

2
(xk − xg)TQ(xk − xg) +

1

2
uTkRuk, (3.5)

where Q = 0.1× I4x4, R = 0.01, and QN = 1000× I4x4 is used. N = 120 knot points are used

for the discretization of the trajectory and the algorithm is initialized with all of the states and

controls set to 0. An input constraint of ±30N, and a final state constraint of xN = xg are

enforced. Optimizations are run at three different constraint tolerances: 1e−2 (“low precision”),

1e−4 (“medium precision”), and 5e−7 (“high precision”). In all cases, the intermediate cost

convergence tolerance was set to 1e−2 and the final iteration cost convergence tolerance was set

to 1e−6. Different conversion criteria are used because while a very precise final trajectory is

2Note that UDP-A is the CUDP algorithm.

19

http://bit.ly/ConstrainedUDP

desired, initial iterations that do not satisfy constraint tolerances do not converge to the final

solution, so there is no need to spend time getting a very precise answer. A maximum value of

1e30 was set for µ, since allowing it to grow much larger led to poor numerical conditioning.

For both penalty-based and augmented UDP, β was set to 1e−2.

Figure 3.1: Inverted Pendulum [1]

Figure 3.2 provides some intuition for how the constrained UDP algorithm solves the inverted

pendulum swing-up problem. The vertical dashed black lines indicate outer loop updates

occurring at the end of major iterations. Intuitively, the first major iteration finds a local

minimum of the primary objective despite large constraint violations. Later iterations reduce

constraint violation while often increasing cost (unconstrained solutions give a lower bound on

cost). Despite increasing values of µ in the final few iterations, the product of c(x, u) and µ

remains relatively constant due to the corresponding decrease in constraint violation. The

algorithm also often violates input constraints temporarily to guide the state trajectory to

feasible regions of state space. This makes intuitive sense as each input is independently

decided and can be drastically changed at will, unlike each state, making them easy to

violate temporarily and fix later. This behavior is qualitatively different from SQP and other

hard constraint based methods, where linearized constraints are strictly satisfied during each

iteration.

20

0 10 20 30 40 50 60 70 80 90 100 110
102

103

104

Lo
g(
C
os
t)

0 10 20 30 40 50 60 70 80 90 100 110

10−7

10−5

10−3

10−1

101

103

Total Iterations

Lo
g(
C
on

st
ra
in
t
V
io
la
ti
on

)

Objective Cost
Maximum State Constraint Violation
Maximum Input Constraint Violation

Figure 3.2: Cost and constraint violation per iteration for CUDP succeeding on the inverted pendulum.

Figure 3.3 shows a failing output from the augmented iLQR algorithm (iLQR-A) in the

high-precision case, exiting after reaching a limit of 100 major iterations. The algorithm

makes progress until the upper bound of µ ≤ 1e30 is reached on the final state constraint

around iteration 100. After that, as various inputs are increased beyond the torque limits to

attempt to satisfy the final state constraint, their respective µ parameters rise, which decreases

the relative weight of the penalty on the final state constraint. This further exacerbates the

problem and prevents any further progress.

Complete results from the inverted pendulum experiments are given in Table 3.1. Results in

red indicate a failure to meet the required constraint tolerance. All of the algorithms were

able to converge in the low-precision setting with very similar total cost, but the penalty

methods required much larger maximum values for µ. iLQR-A finished the fastest, although

21

0 20 40 60 80 100 120 140 160
102

103

104

Lo
g(
C
os
t)

0 20 40 60 80 100 120 140 160

10−7

10−5

10−3

10−1

101

103

105

107

109

Total Iterations

Lo
g(
C
on

st
ra
in
t
V
io
la
ti
on

)

Objective Cost
Maximum State Constraint Violation
Maximum Input Constraint Violation

Figure 3.3: Cost and constraint violation per iteration for iLQR-A failing on the inverted pendulum.

UDP-A found a lower final cost. In the medium-precision setting, both augmented Lagrangian

methods succeeded, while the penalty methods failed to achieve state constraint tolerance and

exited after reaching 100 major iterations. In the high-precision setting, the CUDP algorithm

(UDP-A) was able to find a feasible solution while all other algorithms failed. This experiment

and those that follow show that, for loose constraint tolerances, the use of both iLQR and

penalty methods may be sufficient, but the CUDP algorithm is superior when high-precision

is desired.

22

Low precision: max(c) < 1e−2, initial φ = 1e−1

Iters Cost cx cu µx µu
iLQR-P 254 1006.1 2.3e−4 5.8e−7 1e7 1e7

UDP-P 229 1022.4 1.2e−4 1.1e−6 1e8 1e8

iLQR-A 93 1001.0 8.2e−3 1.8e−3 1e5 1e3

UDP-A 140 999.6 8.8e−3 4.8e−4 1e5 1e3

Medium precision: max(c) < 1e−4, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 231 1011.9 1.7e−4 1.8e−4 1e11 1e11

UDP-P 258 1054.2 4.1e−4 3.4e−8 1e16 1e16

iLQR-A 98 1001.4 2.4e−5 7.7e−5 1e7 1e8

UDP-A 126 999.8 9.0e−6 3.7e−5 1e6 1e4

High precision: max(c) < 5e−7, initial φ = 5e−3

Iters Cost cx cu µx µu
iLQR-A 179 1001.7 3.7e−5 5.0e−5 1e17 1e13

UDP-A 117 999.8 4.6e−8 1.3e−7 1e8 1e7

Table 3.1: CUDP inverted pendulum optimization results.

3.3.2 Quadrotor

The objective for this example is to compute a trajectory that flies a quadrotor through a

forest while avoiding collisions with trees. The quadrotor has four inputs corresponding to

the thrust of each rotor, and twelve states corresponding to the position and Euler angles,

along with their respective first derivatives. A quadratic cost function with Q = 0.1× I12x12,

R = 0.01 × I4x4, and QN = 1000 × I12x12 was used, with N = 120 knot points. All control

inputs were initialized to 0, an input constraint of −10 ≤ u ≤ 10 was applied, and a no-collision

constraint with the trees and a final state constraint of xN = xg were enforced. The algorithms

were again tested at three different constraint tolerance values. For the unscented variants,

β was set to 1e− 4. Figure 3.4 shows a final trajectory computed by the constrained UDP

algorithm.

23

Figure 3.4: Collision-free quadrotor trajectory computed by CUDP.

The full results are shown below in Table 3.2. As in the previous example, all of the algorithms

converged to the low-precision constraint tolerance, with the augmented Lagrangian variants

requiring fewer iterations. For the medium-precision case, both iLQR methods failed to achieve

the required tolerance. We hypothesize that the higher-order information provided by the

UDP backup procedure is responsible for its improved convergence [29]. For tight constraint

tolerances, only UDP-A is able to find a feasible trajectory.

24

Low precision: max(c) < 1e−2, initial φ = 1e−1

Iters Cost cx cu µx µu
iLQR-P 272 758.6 2.8e−4 2.9e−6 1e6 1e6

UDP-P 125 727.4 2.0e−3 7.8e−6 1e5 1e5

iLQR-A 109 712.4 3.7e−3 3.2e−3 1e5 1e2

UDP-A 115 707.3 7.6e−3 2.3e−3 1e4 1e2

Medium precision: max(c) < 1e−4, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 223 764.2 1.4e−3 3.2e−4 1e12 1e12

UDP-P 114 729.6 2.9e−5 2.2e−7 1e10 1e10

iLQR-A 253 712.6 3.3e−4 2.1e−4 1e8 1e5

UDP-A 158 708.8 9.1e−5 1.8e−6 1e8 1e5

High precision: max(c) < 1e−6, initial φ = 5e−3

Iters Cost cx cu µx µu
UDP-P 201 729.6 2.9e−5 2.2e−7 1e11 1e11

UDP-A 149 708.8 5.3e−7 1.7e−7 1e8 1e4

Table 3.2: CUDP quadrotor optimization results.

3.3.3 Robotic Arm

The objective for this example is to compute a trajectory for a Kuka LBR IIWA 14 robotic

arm to place a rigid object onto a shelf while avoiding an obstacle in its workspace. The

state vector is comprised of the 7 joint positions and velocities. We again used a quadratic

cost function with Q = I14x14, R = 1e−4 × I7x7, and QN = 1000× I14x14, with N = 400, all

controls initialized to 0, input constraints of −200 ≤ u ≤ 200Nm on each joint, a no collision

constraint with the obstacle, and a final state constraint of xN = xg. The algorithms were

again tested at three different constraint tolerance values. For the unscented variants, β was

set to 1e−4. In all cases, the intermediate cost convergence tolerance was set to 10 and the

final iteration cost tolerance to 1e−2. These higher values were used for practicality as the

scale of the cost function is larger than the previous examples.

25

A screen shot of the trajectory computed by the constrained UDP algorithm in the high

precision setting is shown in Figure 3.5.

Figure 3.5: Collision-free Kuka arm trajectory computed by constrained UDP.

Table 3.3 contains the results of all trials. As before, all of the algorithms handled the

low-precision case and produced similar overall costs. The penalty methods converged faster,

with lower constraint violation, and larger µ values. Despite their success in the low precision

case, however, both penalty methods failed in the medium precision case. Once again, in the

high precision case, only the UDP-A method succeeded. This example further demonstrates

how penalty and iLQR based methods may succeed with loose constraint tolerances, but the

CUDP algorithm can support much more precise constraint satisfaction.

26

Low precision: max(c) < 1e−2, initial φ = 5e−1

Iters Cost cx cu µx µu
iLQR-P 50 2161.4 9.5e−3 6.5e−8 1e6 1e6

UDP-P 53 2155.4 8.6e−3 5.1e−8 1e6 1e6

iLQR-A 89 2171.3 7.1e−3 6.1e−3 1e6 1e2

UDP-A 88 2174.9 6.3e−3 5.4e−3 1e6 1e3

Medium precision: max(c) < 1e−3, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 155 2161.3 9.6e−3 6.2e−3 1e17 1e17

UDP-P 146 2226.8 7.0e−3 5.3e−3 1e12 1e12

iLQR-A 84 2688.4 5.7e−4 1.3e−5 1e8 1e4

UDP-A 82 2674.4 4.2e−4 1.8e−5 1e8 1e4

High precision: max(c) < 5e−5, initial φ = 5e−3

Iters Cost cx cu µx µu
iLQR-A 182 6471.1 5.9e−3 3.8e−5 1e10 1e3

UDP-A 71 2674.7 2.9e−5 7.1e−6 1e10 1e6

Table 3.3: CUDP Kuka arm optimization results.

27

Chapter 4

Parallelizing DDP1

Recently, computer scientists have looked toward parallelization as a potential solution to

improve the throughput of many algorithms. These explorations have been conducted through

the use of multi-core CPUs, massively parallel GPUs, and even through custom hardware

implementations on FPGAs and eventually ASICs.

Prior work on parallel nonlinear optimization has broadly focused on exploiting the natural

separability of operations performed by the algorithm to achieve instruction-level parallelism.

For example, if a series of gradients needs to be computed for a list of static variables, that

operation can be shifted from a serial loop over them to a parallel computation across them.

Alternatively, if block diagonal matrices must be inverted many times by the solver, each of

these instructions can be broken down into a parallel solve of several smaller linear systems.

These parallelizations might instead be called “low-hanging fruit” parallelizations as they do

not change the theoretical properties of the algorithm and therefore can and should be used

whenever possible. This research has led to a variety of optimized QP solvers targeting CPUs

[49; 50], GPUs [51; 52], and FGPAs [53?].

1Co-authored with Scott Kuindersma

28

These approaches have also been used to specifically improve the performance of a subclass of

QPs that frequently arise in trajectory optimization problems on multi-threaded CPUs [54;

55; 56; 57] and GPUs [58; 59]. Antony and Grant [60] used GPUs to additionally exploit the

inherent parallelism in the “next iteration setup” step of DDP.

In contrast to instruction-level parallelism, algorithm-level parallelism changes the underlying

algorithm to create more opportunities for simultaneous execution of instructions. In the field

of trajectory optimization, this approach was first explored by Bock and Plitt [61] and then

Betts and Huffman [27], and has inspired a variety of “multiple shooting” methods [62; 63].

Recently, this approach been used to parallelize both an SQP algorithm [64]; as well as the

forward [65; 66] and backward passes [17] of the iLQR algorithm. Experimental results from

using these parallel iLQR variants on multi-core CPUs represent the current state of the art

for real-time robotic motion planning. That said, these changes have various tradeoffs that we

will further explore through our experiments in Chapter 5.

Therefore, while DDP is an inherently serial algorithm, in that it performs forward and

backward sweeps along the discretized trajectory, there are still many opportunities to leverage

parallel computations to improve the speed of the algorithm. In the remainder of this chapter

we build on the literature to summarize the various parallelizations that can be made to DDP

and present a unified parallel DDP algorithm.

4.1 Instruction Level Parallelizations for DDP

As shown in Algorithm 1, the forward pass is accepted when the new total cost satisfies the

line search criteria. Therefore, after or during forward integration, the cost at each state must

be evaluated. Since the cost is additive as shown in Equation 2.2, it can be computed fully in

parallel following forward integration. The cost can then be summed up in log(N) operations

using a parallel reduction operator as shown in Figure 4.1.

29

Figure 4.1: Graphical representation of a parallel reduction.

In addition, instead of computing the line search during the forward pass by sequentially

reducing α, we can compute all resulting forward simulations for a set of possible α values in

parallel. Furthermore, if all possible simulations are computed in parallel, then the algorithm

could select the “best” trajectory across all options for α, rather than the first option that

shows improvement.

In order to develop a well performing notion of “best” we start by using the improved line

search criteria as described by Tassa in his thesis [32]. This uses an improved version of the

expected cost reduction (Equation 2.9),

δV ∗(α) = −ακTHu +
α2

2
κTHuuκ, (4.1)

and accepts an iterate if the ratio of the expected reduction to the actual reduction,

z =
(
J − J̃

)
/δV ∗(α), (4.2)

30

falls in the range

0 < c1 < z < c2 <∞. (4.3)

As Tassa explains, "[t]he unintuitive upper limit c2 is used because sometimes the improvement

is due to the initial trajectory being particularly bad, and the new trajectory has jumped from

one bad region of state-space to another slightly-less-bad region, often introducing undesired

features and landing in a local minimum. This situation might be likened to encountering

a vertical drop when trying to get down a mountain. Jumping off might decrease one’s

altitude quickly in short run, but might be a bad idea with regards to reaching the bottom."

Building on this line of thinking, the lower limit c1 is used because steps that far under-perform

their expected reduction indicate that their quadratic approximation of the cost-to-go was

a bad approximation. Since the current model therefore cannot describe the resulting area

of state-space well, these regions could also be bad parts of the state-space with undesired

features. Therefore, by using Tassa’s line search criteria, we exclude potentially bad trajectories,

and can then safely take the lowest cost trajectory that satisfies both criteria as our best

trajectory.

Finally in Algorithm 1, we also show the computation of all quadratizations of the cost function

and dynamics (the “next iteration setup” step) as occurring in one step following the forward

pass. As mentioned earlier, this is already parallelized in many implementations of DDP

used for online robotic motion planning. This is one of the more expensive steps, and being

able to efficiently parallelize this computation is critical for fast performance of the final

implementation.

31

4.2 Algorithmic Level Parallelism for DDP

At its core, the serial nature of DDP stems from the fact that in the forward and backward

passes information is propagated through all of the timesteps in order allowing it to solve

many small problems at each timestep without being myopic. Therefore, in order to create

more parallelism and to avoid the O(N) steps in the forward and backward passes, we need to

delay and modify this information flow while still preventing long term myopic behavior. In

general we do this by breaking the trajectory of N states into equally sized and spaced blocks

of M states which we operate on in parallel while leveraging boundedly stale information and

global consensus operations to ensure correct long term behavior.

4.2.1 Backward Pass

We do this in the backward pass by leveraging the Stale Synchronous Parallel (SSP) model of

computation, which has seen recent success in the machine learning community [67; 68]. The

main idea behind SSP computation is that for an iterative algorithm, if the staleness of the

data reaching parallel computation nodes is bounded, then the algorithm can theoretically

still converge to the same solution as a non-stale implementation. This will often increase

total work while improving throughput.

In the particular example of the backward pass of DDP, we break the N timesteps into Mb

equally spaced parallel blocks of size Nb = N/Mb. In parallel, we can then compute the CTG

within each block by passing information serially backwards in time, as is done in standard

DDP. At each iteration we pass the information from the beginning of one block to the end

of the adjacent block. We can thus ensure that CTG information is at worst case (Mb − 1)

iterations stale between the first and last block as shown in Figure 4.2.

32

Figure 4.2: Graphical representation of the backward pass algorithmic level parallelizations.

Farshidian et. al. [17] note that this approach is somewhat naive and may fail if the trajectory

in the next iterate is far enough away from the previous iterate as the stale CTG approximations

from the previous iterate are defined in relative coordinates and are only valid locally. Therefore,

they propose making an adjustment to the previous iterates CTG to re-center the quadratic

approximation around the current iterate. Formally, a coordinate transformation function f(·)

needs to be applied to points in iterate i+ 1 such that:

V i
(
f
(
xi+1

))
= V i

(
xi
)
. (4.4)

For notational simplicity we define V i+1(·) ≡ V i(f(·)). We can then simply take iterate i’s

quadratic CTG approximation 1
2x

iT V i
xxx

i + xi
T
V i
x , and perform a linear coordinate transfor-

mation to re-center it about xi+1 = xi + δx. After algebraic simplifications,2 the quadratic

term remains the same, while the linear term is updated:

V i+1
x = V i

x + V i
xx(xi+1 − xi). (4.5)

This process is shown graphically in Figure 4.3.

Figure 4.3: Graphical representation of the linear coordinate transformation.

2 1
2

(
xi + δx

)T
V i
xx

(
xi + δx

)
+

(
xi + δx

)T
V i
x → 1

2
xi

T

V i
xxx

i + xi
T (
V i
x + δxTV i

xx

)
+ C

33

While, in theory, this parallel process will still ultimately converge, in practice, some forward

passes will fail to find a solution due to the information in the backward pass blocks being “too

stale.” When this occurs we want to re-run the backwards pass with a better current estimate

of the CTG at the start of each block. We do this by using the previous failed iterate’s CTG

approximation and passing it back along the blocks as if it succeeded since it contains less stale

information than the CTG approximation from the previous successful iterate. However, since

we know that this estimate caused the previous forward pass to fail, we want to encourage the

algorithm to stay closer to the previous successful state trajectory and take a smaller step in

order to help the next forward pass succeed. We therefore update our regularization scheme

and instead of regularizing the control by adding ρIm to Quu from Equation (2.7), we follow

Tassa again and add a state regularization term ρIn to V ′xx in the computation of Quu and

Qxu as follows:

Quu = `uu + fTu
(
V ′xx + ρIn

)
fu + V ′x · fuu

Qxu = `xu + fTx
(
V ′xx + ρIn

)
fu + V ′x · fxu.

(4.6)

This also leads to an updated quadratic model of V (Equation 2.8):

Vx = Qx −KTQuuκ−Qxuκ−KTQu

Vxx = Qxx −KTQuuK −QxuK −KTQux.

(4.7)

Together this improved regularization and the passing back of the failed iterate’s CTG

approximation allows for information to propagate and for safer, smaller steps to be taken,

which improves the robustness of the algorithm.

It is also important to note that the forward pass can also fail in practice because the new

trajectory moved too far from the previous trajectory, rendering the controls at later time steps

sub-optimal. In order to address this issue, most standard DDP implementations increase

their regularization parameter when the forward pass fails. Therefore, this approach attempts

to solve both potential causes of a forward pass failure at the same time.

34

4.2.2 Forward Pass

In order to avoid the O(N) serial forward simulation Giftthaler et. al. [65] introduce what they

call Gauss-Newton Multiple Shooting which adapts iLQR for multiple shooting. It consists

of a fast consensus forward sweep with linearized dynamics followed by a multiple shooting

forward simulation from Mf equally spaced states of length Nf = N/Mf timesteps as shown

in Figure 4.4.

Figure 4.4: Graphical representation of the forward pass algorithmic level parallelizations.

While each of the Mf simulation blocks can be done completely in parallel, this will lead to

defects d between the edges of each block which need to be driven down to 0 at convergence of

the algorithm. Therefore, this defect d must also be taken into account in the approximation

of the CTG as it changes the one step dynamics at the end of each block to:

xk+1 =

f(xk, uk)− dk k is the end of one block

f(xk, uk) otherwise.
(4.8)

This can be collapsed down to one function by setting dk = 0 whenever it is not the end of

one block. Therefore, the non-linear dynamics (Equation 2.1) can be re-written as:

xk+1 = f(xk, uk)− dk. (4.9)

35

Flowing this change through Equations 2.3-2.6 will result in a modified version of Q (δx, δu),

denoted as Q̄, where the gradients are updated as follows:

Q̄x = Qx + fTx V
′
xxd

Q̄u = Qu + fTu V
′
xxd.

(4.10)

We now also update our line search criteria to include the following acceptance criteria:

0 < max
k
||dk||1 < c3 <∞. (4.11)

The additional upper limit, c3, excludes any trajectories that have large defects between the

multiple shooting segments, as these trajectories represent an artificial mathematical reduction

in cost that is infeasible in practice.

Finally, in order to update the starts of each block of states and to avoid myopic behavior

in the blocks, a consensus forward sweep is performed. This is done by integrating the state

trajectory using linearized dynamics (where A = fx and B = fu) and feedback controls

computed for the current state trajectory. Like in the original forward pass, a line search

parameter, α, is needed to ensure a cost decrease. Therefore, the state at timestep k + 1 and

iteration i+ 1 is updated as follows:

xi+1
k+1 = xik+1 +

(
Aik +Bi

kK
i
k

) (
xi+1
k − xik

)
+ αBi

kκ
i
k + dik. (4.12)

Thus, the forward pass from the standard DDP/iLQR algorithm now becomes the serial forward

sweep followed by a parallel forward simulation on each of the Mf blocks. The whole forward-

backward process is then repeated until convergence, just like standard DDP/iLQR.

4.3 Final Parallel Algorithm

In the end we combine the instruction level parallelizations, Mf multiple shooting intervals,

and Mb blocks for the backward pass. This results in a complete algorithm that can adapt its

level of parallelism depending on choices for Mf and Mb as shown in Algorithm 3.

36

Algorithm 3: Parallel DDP

1: Initialize the algorithm and load in initial trajectories
2: while cost not converged do
3: for all Mb blocks b do in parallel
4: for k = b0 : bNb

do
5: dk, (2.6), (4.6), (4.10) → Q̄k

6: if Q̄kuu is invertible then
7: (2.7) → Kk, κk
8: (2.8) → Vk and derivatives
9: else

10: Increase ρ go to line 3
11: end if
12: end for
13: end for
14: for all α[i] do in parallel
15: x̃0[i] = x0
16: if Mf > 1 then
17: for k = 0 : N − 1 do
18: x̃k[i], xk,Kk, κk, dk, (4.12) → x̃k+1[i]
19: end for
20: end if
21: for all Mf blocks b do in parallel
22: for k = b0 : bNf

− 1 do
23: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)
24: x̃k+1[i] = f(x̃k[i], ũk[i])
25: d̃k[i] = 0
26: end for
27: k = bNf

28: if k < N then
29: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)
30: d̃k[i] = xk+1 − f(x̃k[i], ũk[i])
31: end if
32: end for
33: X̃[i], Ũ [i], (2.2), (4.2) → J̃ [i], z̃[i]
34: end for
35: i∗ ← argmini J̃ [i] s.t. z̃[i], d̃[i] satisfy (4.3), (4.11)
36: if i∗ 6= ∅ then
37: X,U, d← X̃[i∗], Ũ [i∗], d̃[i∗]
38: else
39: Increase ρ go to line 3
40: end if
41: Quadratize the cost at X,U
42: Quadratize the dynamics at X,U
43: end while

Backward
Pass

Forward
Sweep

Forward
Simulation

Forward
Pass

Next
Iteration
Setup

37

Chapter 5

Using Parallel DDP for Fast Robotic

Motion Planning1

Our implementations were designed to target modern multi-core CPUs and GPUs in order

to take advantage of their respective parallel processing power. At a high level, a multi-core

CPU is simply a handful of modern complex CPUs that are designed to work together,

often on different tasks, leveraging the multiple-instruction-multiple-data (MIMD) computing

model. In contrast, a GPU is a much larger set of very simple processors, optimized for

parallel computations of the same task, leveraging the single-instruction-multiple-data (SIMD)

computing model. Therefore, as compared to a CPU processor, each GPU processor has many

more arithmetic logic units (ALUs), but reduced control logic and a smaller cache memory

(see Figure 5.1). In this work we specifically targeted NVIDIA GPUs by using the CUDA

extensions to C++ and the NVCC compiler to take advantage of the increased general purpose

computation abilities that NVIDIA has heavily invested in recently.

1Co-authored with Scott Kuindersma

38

Figure 5.1: High level architecture differences between a single CPU and GPU processor [2].

5.1 CUDA Background

Before discussing the GPU implementation, it is important to understand the target program-

ming model, CUDA. CUDA is built around leverage host (CPU) and device (GPU) memory

and code. It is very important to only try to access memory in the host or device by host or

device functions respectively or a SEGFAULT will occur.

Global functions can be launched in parallel on the GPU through the use of a special syntax

(myFunc«<a,b,c,d»>(args)) and are called kernels. In that syntax, a specifies how many

blocks to launch each containing b threads. Each block is guaranteed to run all of its threads

on the same processor but the order of the blocks launching and completing is not guaranteed.

On most modern GPUs, those threads run in warps of 32 threads. It is very important that

each of the threads in the same warp runs the same code and does not branch as branches will

be run serially due to the SIMD architecture of modern GPUs. Also, memory reads/writes to

global memory (RAM) need to be coalesced (sequential) and aligned, as global memory is also

read and written to in chunks. Thus, coalesced reads/writes will greatly reduce the amount of

I/O time transferring data from global memory.2

2While this penalty has been greatly reduced on the newest GPUs due to sophisticated engineering by
GPU manufacturers, it is still best practice.

39

Each processor has its own dedicated L1 cache which is split into standard L1 cache memory

and shared memory, which is managed by the programmer and can be accessed by all threads

in the same block. Shared memory can be allocated statically in the kernel or dynamically

through the c parameter on kernel launch. Using shared memory can be as fast as using

registers if done properly, but if multiple threads try to read from the same shared memory

address at the same time there will be a bank conflict and those reads will be serialized.

There is also a limited amount of shared memory and if more memory is requested than

available, the compiler will either throw an error, or store some of the data in global memory.

Therefore, smart use of shared memory will greatly speed up the kernel and poor use may

slow it down.

Each kernel launch will naturally run sequentially. However, if two kernels are doing completely

unrelated operations they can be launched in parallel through the use of streams which are

denoted on launch by parameter d. There are also thread safe atomic operations and a number

of different ways to synchronize threads in a block, in a stream, or on the entire device.

It is important to note that kernel launches suffer overhead and so combining code into fewer

kernels will improve the speed of the code. This is true for both custom user kernels and

kernels from NVIDIA and third party libraries designed to do common computations (e.g.,

cuBLAS and cuSOLVE for matrix math [69]). Finally, when targeting GPUs it is important

to remember that they are slower than CPUs on straight line serial code which makes them a

poor choice for serial computations. For more information on CUDA and its programming

model we suggest reading the NVIDIA CUDA programming guide [2] and/or CUDA by

Example [70].

40

5.2 C++ Threading Background

As with CUDA, before discussing the multi-core CPU implementation, it is important to

understand the C++ multi-threading programming model. For the purposes of this implemen-

tation we focus on the C++ thread library that provides a higher level and operating system

agnostic interface to the standard UNIX POSIX thread library and can be simply included

using #include<thread>. Not only is this library easy to include, but it also is easy to use

as any function can be called in its own thread by invoking myThread = thread(myFunc,

args).

Each thread will run with its own set of registers and stack memory, and context switches

between threads are scheduled asynchronously by the operating system. In fact, context

switches can occur in the middle of a threads execution. Due to the increased cache size

available on CPU processors, there is no need to manually manage a notion of shared memory.

Instead, smart access patterns to memory addresses will allow the CPU to automatically cache

often used data. Again, coalesced and aligned memory access and lack of branching is strongly

suggested, as the CPU will often try to predict the next instructions and data and will be

much faster if this pre-fetching is exploited.

It is important to note that thread launches do incur some overhead and since there are in

general only a handful of cores on most systems, CPU multi-threading scales best to the

tens of threads. As on a GPU, there are notions of atomic operations and synchronization

through the thread.join() call, which, importantly, must be called on each thread before

the process finishes or an error will occur.3 Since the thread library is part of the standard

library for C++11, there are a host of books and resources online that explain it in greater

detail including C++ Concurrency in Action [71].

3Threads can also be detached from the current process and left to run independently through the
thread.detach() call.

41

5.3 Implementation Details

Our GPU implementation was designed to target modern NVIDIA GPUs. We minimized

memory bandwidth delay by doing most computations on the GPU, which removes the need

for most memory transfers between the device and host. The CPU is instead in charge of high

level serial control flow for kernel launches, such as the outer while loop, as well as the if

and else statements that decide whether to accept or reject new trajectories. On the GPU

we also condense as many computations onto as few kernels as possible, a process known as

kernel fusion [72], to minimize kernel launch overhead. We also make heavy use of streams

and asynchronous memory transfers to increase throughput wherever possible. For example,

by running the quadratization of the cost and dynamics in separate streams, the throughput

time for the next iteration setup was much closer to the maximum of the running times for

those steps than the sum. Similarly, we also update all control trajectories for the parallel line

search to the next iterate in parallel with the backward pass computations as both steps are

independent and need to simply finish before the next forward pass.

This approach led to very fast code and required a lot of custom kernel design. This occurred

because we found that the heavily optimized general purpose GPU matrix math libraries

(e.g., cuBLAS) are optimized for very large matrix operations. DDP algorithms, on the other

hand, require many sets of serial small matrix operations that suffer overhead from these

implementations. Therefore, we implemented simple custom kernels which keep the data in

shared memory throughout these computations and provide a large speedup. We further

optimized our code by precomputing terms during parallel operations. For example, during the

backward pass, A,B,K, and κ were already loaded into shared memory and thus computing

A+BK and Bκ only added a small overhead to the paralellizable backward pass, while greatly

reducing the time for the serial forward sweep.

In our multi-threaded CPU implementation we began by reusing the same baseline code

to leverage the work that went into using best practices with memory access patterns and

42

overlapping computations. However, with the decreased number of threads for ideal perfor-

mance, we needed to introduce loops in each threaded computation to minimize the number

of thread launches while still computing all of the necessary results. In general, we tried

to limit the number of threads to a small multiple of the number of CPU cores in order to

maximize CPU usage while minimizing thread launch overhead. Thus, we did not parallelize

the forward pass across all line search parameters as we often had fewer cores than the number

of multiple shooting intervals. Therefore, we instead used the standard serial loop over line

search parameters.

In both implementations, we made use of analytical dynamics and cost functions and their

respective gradients and Hessians to maximize performance and to ensure that the control

flow for computations on the GPU was simple and mainly required only ALU operations. For

our simple systems we were able to hand derive these functions. For more complex systems

we intended to use the RobCoGen software package to generate optimized C++ code for the

forward dynamics and coordinate transforms from simple description files [73]. However, while

the package is optimized and very fast when used by CPUs, it relies heavily on object oriented

programming. Dynamically allocating those objects in CUDA kernels overflows the available

shared memory and registers on each CUDA core, and loading those objects in from global

memory proved to be very slow. Therefore, for the purposes of this work, we were limited

to hand derived dynamics, and thus to simpler systems. Furthermore, we found that our

initial MATLAB generated analytical derivatives included many repeated terms and needed

to be hand optimized to meet our performance criteria. For example, for the quadrotor, our

optimizations we were able to reduce the computation time by an order of magnitude.

In general, we found that the more we could special case the algorithm and make decisions at

compile time, the faster we could make the algorithm. This raises an inherent tension in high

performance software design as for practical real world use we need to provide some flexibility

to the user, but still have very fast code.

43

5.4 Examples

In this section, three numerical examples are provided to demonstrate the performance of our

parallel implementation of iLQR. We ran our experiments on a laptop with 16GB of RAM,

a 2.8GHz quad-core Intel Core i7-7700HQ CPU, and a 1708MHz 1280 Cuda Core NVIDIA

GeForce GTX 1060 6GB GDDR5 GPU. In all of our experiments we seeded the optimizer

with a poor initialization. For the simple and inverted pendulums, all controls were initialized

to a very small constant value,4 while for the quadrotor, we initialized the algorithm with a

simple hover. All of the experiments used a 3rd-order Runge-Kutta method for integration

over a 4 second trajectory with N = 128 knot points. All of the solvers used the same scheme

for updating ρ and the same set of line search options for α. For more consistent experimental

comparisons, we also enforce staleness of the CTG during the backward pass and of the starting

state of each forward simulation even if the asynchronous launches of the blocks would have

allowed for some updated information to flow.5

We report results in terms of time per iteration and cost reduction as a function of the number

of iterations. Time per iteration is a particularly useful metric when comparing our results

to the current state of the art, as in those results, the solver is often run a fixed, small

number of iterations at every control step. Our target performance was to match those solvers

which operate at 40-200Hz (5-25ms per iteration of iLQR) [17; 6; 14; 15; 74; 16]. We note

that many of these results are achieved on systems whose complexity is of the quadrotor

or greater. Therefore, we only compare our timing from our quadrotor experiment to the

literature. To ensure our results were representative for each experiment, we ran 100 trials

with noise ∼ N (0, σ2) applied to the velocities of the initial trajectory.

4With a single backward pass we could initialize the controls with 0. However, in the parallel case we need
to provide some control from which feedback gains can be computed on the first pass, otherwise the information
from the final state may not propagate down the backward pass blocks fast enough for the algorithm to progress
at all in the first few iterations. This often leads to a premature exit for “convergence.” We ended up initializing
all controls to 0.01 Nm.

5In general this simply degrades performance slightly and therefore our results provide a lower bound on
throughput depending on the scheduling of threads at runtime and the hardware on which they are run.

44

5.4.1 Simple Pendulum

We first consider the classic pendulum system and swing-up task in simulation. We define

the state vector to be x = [θ, θ̇]T where θ is the angle of the pendulum measured from the

downward equilibrium. The initial state is x0 = [0, 0]T , the stable downward equilibrium,

and the goal state is xg = [π, 0]T , the unstable upward equilibrium. As in Section 3.3, we

use a quadratic cost function where Q = diag(0.1, 0.01), R = 0.01, and QN = 1000 × I2x2.

We solve the problem on using both our GPU and multi-core CPU implementations with

Mb = Mf = M = 1, 2, 4, 8, 16, 32, 64 and σ = 0.01.

The median cost per iteration across all levels of parallelism is shown in Figure 5.2. As

we increase M , and add delays into the information propagating through the forward and

backward passes, the algorithm requires more iterations to converge. Furthermore, for M < 8

the “best line search” option employed by the GPU leads to faster convergence than the

standard method and is otherwise equivalent.

Figure 5.2: Total cost per iteration for the simple pendulum swing up.

The median time per iteration for each of the parallelization options for both implementations

is shown in Figure 5.3. We report median time per iteration as the CPU implementation

45

will execute the forward simulation and sweep a variable number of times depending on the

depth of the line search, unlike the GPU implementation which executes the full line search in

parallel at every iteration.

Figure 5.3: Median time per iteration time for the simple pendulum swing up.

With regard to the GPU implementation, we find that by parallelizing the forward simulation

and backward pass we can drastically reduce the computation time per iteration. That said,

there are diminishing returns to parallelization. First, kernel launch overhead begins to

dominate the running time as parallelization is increased. Second, since the next iteration

setup is always fully parallelized and the forward sweep does not parallelize at all, the running

times for both steps do not decrease as we increase M . This leads to their time beginning to

dominate the total time. In fact, starting at M = 16, the forward sweep is the most expensive

step in the algorithm. This is a prime example of Amdahl’s law [75], which shows diminishing

returns to parallelism based on the percentage of the code that can be parallelized.

In regards to the multi-core CPU implementation, we find that the swing up task for the

pendulum problem is too computationally easy to warrant parallelism on the CPU. A single

thread can solve the problem fast enough that thread launch overhead is highly problematic.

In addition, we run out of cores for parallel computation quite quickly, and need to serialize

any further potentially parallel computations, this leads to a litany of context switches and

attempts at “hyperthreading” (pretending one core is two and running two threads on that

46

core almost simultaneous), which ultimately slows down the code. This is most evident in the

massive slowdown in the forward simulation and backward pass as M grows from 1 to 8. Once

M > 4 we have run out of cores and therefore any future potentially parallel computations

are serialized and thus the slowdown plateaus.

From the data we can also see that the CPU is able to leverage its higher clock rate to compute

the serial forward sweep faster than the GPU, but the GPU is able to leverage its increased

number of cores to compute the parallel next iteration setup step faster than the CPU, as we

would expect.

5.4.2 Inverted Pendulum

We then again consider the classic inverted-pendulum system and swing-up task in simulation as

done in Section 3.3.1 (this time without a final state constraint). We set Q = blkdiag(0.01×

I2x2, 0.001 × I2x2), R = 0.0001, QN = 10000 × I4x4. We solve the problem again using

M = 1, 2, 4, 8, 16, 32, 64 and σ = 0.001.

Like in the previous experiment, we find that for larger M , the algorithm requires more

iterations to converge (see Figure 5.4). This time we find that the “best line search” option

employed by the GPU leads to faster convergence across all levels of parallelism. The one

exception is the M = 64 case in which it not only converged slower than the standard method

but also caused many trials to converge to other less optimal local minima.

The GPU implementation shows similar decreases in time per iteration due to increased

parallelism as it did during the simple pendulum experiment (see Figure 5.5). However,

the more complex and computationally expensive system dynamics, lead to increased time

per iteration, as compared to the simple pendulum experiment, across all choices for M .

Interestingly, the always fully parallel “next iteration setp” takes a very similar amount of time

to compute as it did in the simple pendulum experiment. We hypothesize that the combination

of using an optimized dynamics gradient function and computing all states fully in parallel

47

Figure 5.4: Total cost per iteration for the inverted pendulum swing up.

allows for the overall computation to take a similar amount of time.

The CPU implementation again struggles to parallelize well. We again believe that this

example is too simple for the CPU to warrant effective multi-core parallelization. Finally,

again, we find that the next iteration setup step parallelizes better on the GPU and the serial

forward sweep runs faster on the CPU.

Figure 5.5: Median time per iteration time for the inverted pendulum swing up.

48

5.4.3 Quadrotor

We finally consider again the Quadrotor system and flight task from Section 3.3.2. (this time

without constraints). We set Q = blkdiag(0.01× I3x3, 0.001× I3x3, 2.0× I6x6), R = 5.0× I4x4,

QN = 1000× I12x12. We again solve the problem using M = 1, 2, 4, 8, 16, 32, 64 and σ = 0.01.

As mentioned previously, we initialize the algorithm with a torque input that counters gravity

and allows the quadrotor to hover.

As with the other experiments, figure 5.6 clearly shows the median cost per iteration increasing

as M increases. At the same time, the “best line search” option only shows improvement over

the standard method in the M = 64 case and is otherwise equivalent. It is also important to

note that all trials converged in the M < 64 cases but in the M = 64 case only ∼ 60% of both

the GPU and CPU trials converged.

Figure 5.6: Total cost per iteration for the quadrotor flight.

Also as with the previous experiments, and shown in Figure 5.7, we find that the GPU shows

strong improvements in results for increased levels of parallelism. We also see that in this more

complex example, the CPU backward pass and forward simulation also get faster as M grows

from M = 1 to M = 4. Once we have M > 4 we exceed the number of cores on the system

49

and incur serialization penalties such that the speed slows and plateaus. Again, we find that

the next iteration setup step parallelizes better on the GPU and the serial forward sweep runs

faster on the CPU. Finally, with time per iteration at 5ms for GPU M = 1 and under 3.5ms

for all other GPU and CPU cases, our implementation is able to beat state-of-the-art reported

rates of 5-25ms [74] on a similar system.

Figure 5.7: Median time per iteration time for the quadrotor flight.

Overall, across all of our experiments, we see that today’s multi-core CPUs are incredibly

powerful and compute serial and mildly parallel objects very quickly. However, we also see

that for truly parallel computations, GPUs can provide greatly increased performance even on

very simple tasks.

50

Chapter 6

Conclusion

In this thesis, we addressed some of the practical challenges of using DDP in dynamic

environments. First we presented the constrained UDP algorithm, a computationally efficient

DDP variant capable of satisfying nonlinear state and input constraints with high accuracy

through the use of an augmented Lagrangian. Second, we presented an implementation of

the iLQR algorithm for multi-core CPU and GPU usage that can solve iLQR iterations at

speeds comparable to the state of the art, revealing the power of and challenges with parallel

computations.

Several directions for future research remain. For CUDP, combining multiple constraint-

handling approaches may prove beneficial. For example, box constraints on inputs are

captured using cost terms in our experiments. It would be straightforward to instead use

existing QP techniques in the backward pass to compute input constraints [37; 38], while using

augmented Lagrangian terms for state constraints. An empirical comparison including barrier

methods in the DDP setting would also be interesting.

Also, as highlighted in prior work on UDP [29], the sigma point scaling parameter, β, must

be chosen ahead of time for each example. Automatic approaches to setting β remain an

interesting open problem. Similarly, more work is needed to determine optimal—or even good

51

suboptimal—schedules for φ and µ. We believe our results could be significantly improved if

more effort was spent exploring update schemes.

We also hope that parallelization of trajectory optimization algorithms will continue to increase

their speed and performance, but note that for widespread applicability, software needs to

be developed that generates GPU optimized dynamics functions for arbitrary systems. We

were able to hand optimize dynamics for our simple systems, but don’t see that scaling

well to more complex systems. In addition, adding support for constraints at similar speeds

must be completed before these algorithms can be used on physical hardware in constrained

environments.

In future work, we plan to develop parallel implementations of CUDP, augmented Lagrangian

constrained iLQR, as well as other constrained DDP variants, targeting online MPC applica-

tions. We also plan to run experiments on hardware systems to validate our current simulation

results both on more complex systems and to prove their validity in the real world. We also

hope to analyze various flavors of QP solvers with various constraint formulations to see if

alternate non-linear program solvers will be more amenable to parallelization and therefore

may ultimately provide higher performance.

We hope that this work will eventually lead to that elusive Holy Grail of whole-body motion

generation—real time optimal trajectory generation.

52

References

[1] R. Tedrake, “Underactuated Robotics: Algorithms for Walking, Running, Swimming,
Flying, and Manipulation (Course Notes for MIT 6.832)..”

[2] NVIDIA, NVIDIA CUDA C Programming Guide. version 9.1 ed.

[3] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, vol. 3
of Advances in Design and Control. Society for Industrial and Applied Mathematics
(SIAM).

[4] K. D. Mombaur, “Using optimization to create self-stable human-like running,” vol. 27,
no. 3, pp. 321–330.

[5] M. Posa, M. Tobenkin, and R. Tedrake, “Lyapunov analysis of rigid body systems
with impacts and friction via sums-of-squares,” in Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control (HSCC 2013), pp. 63–72.

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization of Complex Behaviors
through Online Trajectory Optimization,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems.

[7] W. Xi and C. D. Remy, “Optimal Gaits and Motions for Legged Robots,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabilization of trajectories
for constrained dynamical systems,” in Proceedings of the International Conference on
Robotics and Automation (ICRA), pp. 1366–1373, IEEE.

[9] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for Large-scale
Constrained Optimization,” vol. 47, no. 1, pp. 99–131.

[10] A. Wächter and L. T. Biegler, “On the Implementation of an Interior-point Filter Line-
search Algorithm for Large-scale Nonlinear Programming,” vol. 106, no. 1, pp. 25–57.

[11] D. Q. Mayne, “A second-order gradient method of optimizing non- linear discrete time
systems,” vol. 3, p. 8595.

[12] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming. Elsevier.

53

[13] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design for Nonlinear
Biological Movement Systems,” in Proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics.

[14] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An integrated system
for real-time model predictive control of humanoid robots,” in 2013 13th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), pp. 292–299.

[15] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and
N. Mansard, “Whole-body Model-Predictive Control applied to the HRP-2 Humanoid,”
in Proceedings of the IEEERAS Conference on Intelligent Robots.

[16] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory Optimization
Through Contacts and Automatic Gait Discovery for Quadrupeds,” vol. 2, no. 3, pp. 1502–
1509.

[17] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, “Real-time motion
planning of legged robots: A model predictive control approach,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), pp. 577–584.

[18] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
Silicon and the End of Multicore Scaling,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pp. 365–376, ACM.

[19] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation Cores: Reducing the Energy of Mature
Computations,” in Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XV, pp. 205–218,
ACM.

[20] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato,
G. Y. Wei, and D. Brooks, “Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pp. 267–278.

[21] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The microarchitecture
of a real-time robot motion planning accelerator,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–12.

[22] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris, “Robot Motion Planning
on a Chip,” in Robotics: Science and Systems.

[23] C. Park, J. Pan, and D. Manocha, “Real-time optimization-based planning in dynamic
environments using GPUs,” in 2013 IEEE International Conference on Robotics and
Automation, pp. 4090–4097.

[24] S. Heinrich, A. Zoufahl, and R. Rojas, “Real-time trajectory optimization under motion
uncertainty using a GPU,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3572–3577.

54

[25] A. Wittig, V. Wase, and D. Izzo, “On the Use of Gpus for Massively Parallel Optimization
of Low-thrust Trajectories,”

[26] B. Ichter, E. Schmerling, A. a Agha-mohammadi, and M. Pavone, “Real-time stochas-
tic kinodynamic motion planning via multiobjective search on GPUs,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5019–5026.

[27] J. T. Betts and W. P. Huffman, “Trajectory optimization on a parallel processor,” vol. 14,
no. 2, pp. 431–439.

[28] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” vol. 92,
no. 3, pp. 401–422.

[29] Z. Manchester and S. Kuindersma, “Derivative-Free Trajectory Optimization with Un-
scented Dynamic Programming,” in Proceedings of the 55th Conference on Decision and
Control (CDC).

[30] R. Bellman, Dynamic Programming. Dover.

[31] L.-z. Liao and C. A. Shoemaker, “Advantages of Differential Dynamic Programming Over
Newton’s Method for Discrete-time Optimal Control Problems.”

[32] Y. Tassa, “Theory and Implementation of Biomimetic Motor Controllers.”

[33] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” vol. 6,
no. 1, pp. 19–26.

[34] E. Todorov, “A convex, smooth and invertible contact model for trajectory optimization,”
in Proceedings of the International Conference on Robotics and Automation (ICRA).

[35] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2nd ed.

[36] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained Unscented Dynamic
Programming,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

[37] J. F. O. D. O. Pantoja and D. Q. Mayne, “A sequential quadratic programming algorithm
for discrete optimal control problems with control inequality constraints,” in Proceedings
of the 28th IEEE Conference on Decision and Control,, pp. 353–357 vol.1.

[38] Y. Tassa, T. Erez, and E. Todorov, “Control-Limited Differential Dynamic Programming,”
in Proceedings of the International Conference on Robotics and Automation (ICRA).

[39] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An Efficient Optimal
Planning and Control Framework For Quadrupedal Locomotion,”

[40] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming with nonlinear
constraints,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 695–702.

[41] A. Forsgren, P. Gill, and M. Wright, “Interior Methods for Nonlinear Optimization,”
vol. 44, no. 4, pp. 525–597.

55

[42] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,
and P. Abbeel, “Motion planning with sequential convex optimization and convex collision
checking,” vol. 33, no. 9, pp. 1251–1270.

[43] J. van den Berg, “Iterated LQR smoothing for locally-optimal feedback control of systems
with non-linear dynamics and non-quadratic cost,” in American Control Conference
(ACC), 2014, pp. 1912–1918.

[44] M. Toussaint, “A Novel Augmented Lagrangian Approach for Inequalities and Convergent
Any-Time Non-Central Updates,”

[45] T. C. Lin and J. S. Arora, “Differential dynamic programming technique for constrained
optimal control,” vol. 9, no. 1, pp. 27–40.

[46] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming Algorithm
for Constrained Optimal Control Problems. Part 1: Theory,” vol. 154, no. 2, pp. 382–417.

[47] D. P. Bertsekas, “Multiplier Methods: A Survey,” vol. 12, no. 2, pp. 133–145.

[48] R. Tedrake and the Drake Development Team, “Drake: A planning, control, and analysis
toolbox for nonlinear dynamical systems.”

[49] D. Leineweber, “Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models.”

[50] D. P. Word, J. Kang, J. Akesson, and C. D. Laird, “Efficient Parallel Solution of Large-scale
Nonlinear Dynamic Optimization Problems,” vol. 59, no. 3, pp. 667–688.

[51] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid,” in ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,
pp. 917–924, ACM.

[52] L. Yu, A. Goldsmith, and S. Di Cairano, “Efficient Convex Optimization on GPUs for
Embedded Model Predictive Control,” in Proceedings of the General Purpose GPUs,
GPGPU-10, pp. 12–21, ACM.

[53] K. V. Ling, S. P. Yue, and J. M. Maciejowski, “A FPGA implementation of model
predictive control,” in 2006 American Control Conference, pp. 6 pp.–.

[54] H. Joachim Ferreau, A. Kozma, and M. Diehl, “A Parallel Active-Set Strategy to Solve
Sparse Parametric Quadratic Programs arising in MPC,” vol. 45, no. 17, pp. 74–79.

[55] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming method for
dynamic optimization problems,” vol. 7, no. 3, pp. 289–329.

[56] G. Frison, “Algorithms and Methods for Fast Model Predictive Control.”

[57] R. Quirynen, “Numerical simulation methods for embedded optimization.”

[58] Y. Huang, K. V. Ling, and S. See, “Solving Quadratic Programming Problems on Graphics
Processing Unit,”

56

[59] D.-K. Phung, B. Hérissé, J. Marzat, and S. Bertrand, “Model Predictive Control for
Autonomous Navigation Using Embedded Graphics Processing Unit,” vol. 50, no. 1,
pp. 11883–11888.

[60] T. Antony and M. J. Grant, “Rapid Indirect Trajectory Optimization on Highly Parallel
Computing Architectures,” vol. 54, no. 5, pp. 1081–1091.

[61] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal
control problems,” vol. 17, no. 2, pp. 1603–1608.

[62] D. M. Garza, “Application of automatic differentiation to trajectory optimization via
direct multiple shooting.”

[63] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control,” in Fast Motions in Biomechanics and Robotics,
pp. 65–93, Springer, Berlin, Heidelberg.

[64] D. Kouzoupis, R. Quirynen, B. Houska, and M. Diehl, “A Block Based ALADIN Scheme
for Highly Parallelizable Direct Optimal Control,” in Proceedings of the American Control
Conference.

[65] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl, “A Family of Iterative
Gauss-Newton Shooting Methods for Nonlinear Optimal Control,”

[66] E. Pellegrini and R. P. Russell, “A Multiple-Shooting Differential Dynamic Programming
Algorithm,” in AAS/AIAA Space Flight Mechanics Meeting.

[67] M. Zinkevich, J. Langford, and A. J. Smola, “Slow Learners are Fast,” in Advances in
Neural Information Processing Systems 22 (Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, eds.), pp. 2331–2339, Curran Associates, Inc.

[68] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson, G. R. Ganger, and
E. P. Xing, “More Effective Distributed ML via a Stale Synchronous Parallel Parameter
Server,” vol. 2013, pp. 1223–1231.

[69] NVIDIA, “GPU-Accelerated Libraries for Computing.”

[70] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 1st ed.

[71] A. Williams, C++ Concurrency in Action : Practical Multithreading. Manning.

[72] J. Filipovič, M. Madzin, J. Fousek, and L. Matyska, “Optimizing CUDA Code By Kernel
Fusion—Application on BLAS,” vol. 71, no. 10, pp. 3934–3957.

[73] M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini, “RobCoGen: A code generator
for efficient kinematics and dynamics of articulated robots, based on Domain Specific
Languages,” vol. 7, no. 1, pp. 36–54.

57

[74] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and
J. Buchli, “Fast nonlinear Model Predictive Control for unified trajectory optimization
and tracking,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1398–1404.

[75] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, AFIPS ’67 (Spring), pp. 483–485, ACM.

58

	Abstract
	Acknowledgments
	Introduction
	Algorithmic Background
	Differential Dynamic Programming (DDP)
	Unscented Dynamic Programming (UDP)
	Augmented Lagrangian Methods

	Constrained Unscented Dynamic Programming (CUDP)Co-authored with Zachary Manchester and Scott Kuindersma Plancher17
	Constrained DDP Background
	The CUDP Algorithm
	Experiments
	Inverted Pendulum
	Quadrotor
	Robotic Arm

	Parallelizing DDPCo-authored with Scott Kuindersma
	Instruction Level Parallelizations for DDP
	Algorithmic Level Parallelism for DDP
	Backward Pass
	Forward Pass

	Final Parallel Algorithm

	Using Parallel DDP for Fast Robotic Motion PlanningCo-authored with Scott Kuindersma
	CUDA Background
	C++ Threading Background
	Implementation Details
	Examples
	Simple Pendulum
	Inverted Pendulum
	Quadrotor

	Conclusion
	References

