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Differential Dynamic Programming (DDP) has shown 
great promise for Model Predictive Control (MPC)

[Koenemann et. al. IROS 2015][Erez et. al. Humanoids 2013][Tassa et. al. IROS 2012]

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]



Differential Dynamic Programming (DDP) has shown 
great promise for Model Predictive Control (MPC)

[Shao and Brooks Synthesis Lectures on Computer Architecture 2015]

• Frequency scaling is 
ending (CPUs aren’t 
getting faster)

• Massive parallelism on 
GPUs and FPGAs may be 
a solution for trajectory 
optimization



A Performance Analysis of Parallel Differential
Dynamic Programming on a GPU

• Systematically analyze the algorithm level and 
instruction level parallelism in DDP

• Discuss the benefits and trade-offs of higher 
degrees of parallelization (GPU) versus a higher 
clock rate (CPU)

• Demonstrate real-time model predictive control 
using a GPU based implementation



DDP computes the optimal control via the 
recursive Bellman equation



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Compute the cost-to-go and feedback control 
update to the controls backward in time



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Compute the cost-to-go and feedback control 
update to the controls backward in time



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

2. Simulate the system forward in time to create 
a new nominal trajectory (using a line search)



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Compute the cost-to-go and feedback control 
update to the controls backward in time

2. Simulate the system forward in time to create 
a new nominal trajectory (using a line search)

3. Taylor approximate the dynamics and cost to 
setup for the next iteration

4. Repeat this process until convergence



Instruction Level Parallelism parallelizes the 
standard computations in DDP

1. Taylor Approximations of 
the Dynamics and Cost

2. Line Search

3. Cost Computation
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Breaking the trajectory into M blocks exposes 
Algorithm Level Parallelism in DDP

• The backward pass proceeds serially 
within parallel blocks 

[Farshidian et. al. Humanoids 2017]



Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

[Farshidian et. al. Humanoids 2017]

• The backward pass proceeds serially 
within parallel blocks 



Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

• Between iterations information flows 
across block boundaries

[Farshidian et. al. Humanoids 2017]



Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

• The parallel forward pass begins with 
a fast forward consensus sweep using 
linearized dynamics

[Giftthaler et. al. 2017]



Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

• Followed by a serial forward 
simulation using the full nonlinear 
dynamics within parallel blocks 
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Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

[Giftthaler et. al. 2017]

• Followed by a serial forward 
simulation using the full nonlinear 
dynamics within parallel blocks 



Breaking the trajectory into blocks exposes 
Algorithm Level Parallelism in DDP

• Leading to defects between blocks 
that need to be driven down to zero 
at convergence

[Giftthaler et. al. 2017]



[Farshidian et. al. Humanoids 2017, Giftthaler et. al. 2017]

Using both instruction and algorithm level 
parallelism leads to the Parallel DDP Algorithm
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As compared to CPUs, GPUs trade off clock rate, 
control logic, and cache size for ALU operations

[NVIDIA]

CPU

Control Logic

Arithmetic 
and Logic 
Unit (ALU)

Arithmetic 
and Logic 
Unit (ALU)

Arithmetic 
and Logic 
Unit (ALU)

Arithmetic 
and Logic 
Unit (ALU)

Cache

DRAM

GPU

DRAM

We mapped the same underlying code onto both the GPU 
and multi-threaded CPU (adding loops in the CPU case)



We evaluated Parallel DDP on a GPU and CPU 
through two experiments in simulation



Quadrotor

The GPU is able to exploit instruction level 
parallelism for a faster next iteration setup

Kuka Arm

GPU M CPU M
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Quadrotor

Both the CPU and GPU are able to exploit 
algorithm level parallelism in the backward pass

Kuka Arm

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 4 8 16 32 64 1 2 4 8 16 32 64

TI
m

e 
pe

r I
te

ra
tio

n 
(m

s)

GPU M CPU M

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 4 8 16 32 1 2 4 8 16 32

GPU M CPU M



Quadrotor

The forward simulation does not parallelize well 
on the CPU

Kuka Arm
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Quadrotor

Algorithm level parallelism leads to delayed 
information and slower convergence
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Quadrotor

The forward simulation does not parallelize well 
on the CPU

Kuka Arm
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Quadrotor

The CPU is able to compute the serial forward 
consensus sweep faster than the GPU

Kuka Arm
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Quadrotor

Parallelism has tradeoffs but when exploited 
carefully leads to improved performance

Kuka Arm
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Parallelism has tradeoffs but when exploited 
carefully leads to improved performance

Quadrotor
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Parallelism has tradeoffs but when exploited 
carefully leads to improved performance

Kuka Arm
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Parallel DDP on a GPU can be used for real time 
Model Predictive Control

• GPU M=4

• 10ms control loop 

• Only given current goal 
position at each solve



Let’s air that dirty laundry

This work was supported by a Draper Internal Research and Development grant and by the National Science Foundation Graduate 
Research Fellowship (under grant DGE1745303). Any opinions, findings, conclusions, or recommendations expressed in this 
material are those of the authors and do not necessarily reflect those of the funding organizations.

• Usual DDP sticking points still apply as it is sensitive to:
− Cost function choices
− Initial state and input trajectories
− Regularization scheme

• Sensitivities are heightened for higher degrees of parallelization
• MPC results need to be validated on hardware (I am actively 

working on that)

agile.seas.harvard.edu brian_plancher@g.harvard.edu



This work was supported by a Draper Internal Research and Development grant and by the National Science Foundation Graduate 
Research Fellowship (under grant DGE1745303). Any opinions, findings, conclusions, or recommendations expressed in this 
material are those of the authors and do not necessarily reflect those of the funding organizations.

A Performance Analysis of Parallel Differential
Dynamic Programming on a GPU

• Exploit instruction level parallelism for maximal performance
• Hardware specific tradeoffs exist for algorithm level parallelism
• If expensive operations can be parallelized then GPUs can 

provide higher performance
• DDP is not very parallelizable – potential for direct methods? 
• More evidence for real-time model predictive control

agile.seas.harvard.edu brian_plancher@g.harvard.edu



Questions?

Thank you for listening!



Parallelism has tradeoffs but when exploited 
carefully leads to improved performance

Kuka Arm
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DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Instruction Level Parallelism

2. Algorithm Level Parallelism

Two Ways to Parallelize Algorithms



Quadrotor

Algorithm level parallelism leads to delayed 
information and slower convergence
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Arm

GPU M CPU M
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